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Extended particle-in-cell {EPIC) schemes are considered with a
view to applications in electrostatic drift-wave turbulence and ordi-
nary hydrodynamical turbulence, where periodic boundary condi-
tions are inappropriate. We treat issues relating to the dual particle—
mesh representation and to the need to follow particle orbits accu-
rately. A successful application of EPIC to an advection dominated
ftow is demonstrated. The errors are quantified so that choosing
suitable numerical parameters to obtain a result of a given accuracy
is straightforward. 1985 Academic Press, Inc.

1. INTRODUCTION

We shall be concemed with fluid flow problems where the
convective term s dominant. The particular application we
wish to make is to drift-wave turbulence in plasma confinement

devices, especially tokamaks. Our governing equations, derived

by simplifying the two-fluid equations (the plasma electrons
constitule one fluid, the ions the second), retain many features
of the originals, e.g., convective nonlinearitics and diffusive
terms (see Lhe review by Horlon }1]).

It is natural to introduce particles to treat advective terms,
while retaining a mesh for other physical effects. The particle-
in-cell or PIC scheme [2] was one of the earliest methods, of
any type, to be used for hydrodynamical calculations. In two
space dimensions and for most drift wave problems a vorticily
formulation is possible. The particles then carry vorticity, lead-
ing to the vortex methods (see the review by Leonard [3]).
There are three principal types: (1) the point-vortex method,
where the exact (singular) Green's function is used to obtain
the flow from the velocity, (2) the vortex blob method, where
the Green's function kernel is smoothed, and (3) the vortex-
in-cell method. The first two are essentialty meshless, making
the inclusion of extra drift wave effects (oo difficult, Christian-
sen |4} was the first 1o study vortex-in-cell, and his code was
also used for simple drift calculations [5]. Recent examples of
vortex-in-cell calculations are provided by Refs. [6, 7]. In the
early 1980s it was realised that treating the mesh from the finite
clement standpoint could be very profitable. Bardos et al. [8]
ts an early effort in this direction, apparently abandoned in
favour of schemes where the particles are generated and re-
moved at each tmestep [9]. These, and indeed nearly all
schemes using Lagrangian ideas, can be simply treated within

X2E-974%1795 §6.00
Capyright © 1995 by Academic Press, Inc,
All rights of reproduction in any form reserved,

the EPIC framework [10, 11], where the “‘E” stands for
“‘ephemeral’” or ‘‘extended,” depending on whether or not
particles retain their identities over more than one timestep.

The extended PIC scheme upon which this paper will focus,
involves the idea of a dual basis: a field is discretised both by
particles bearing some attribute, e.g, vorticity, and by nodal
values of a finite element representation. The two representa-
tions can of course be equivalent only in the weak or inner
product sense. An example of this kind of equivalence is pro-
vided by the charge-assignment step in particle methods [12].
For a finite element basis consisting of chapeau functions, the
resulting schemes closely resemble vortex-in-cell when applied
to the Euler equation, but differ for drift wave systems.

An important question concerns the treatment of the diffusive
terms. The simplest technique is to introduce a random walk
into the particle motions [13], but this suffers from a lack
of determinism. The other meshless methods are either not
applicable, e.g., Leonard’s expanding vortex cores [3], or at
least as involved [14, 15] as using the mesh to calculate the
diffusion, the strategy that we adopt. Hence the particle attri-
butes change as a result of the dissipation and, indeed, due to
other physical processes.

The paper is organised as follows: Section 2 sets out the kind
of equations we are trying to solve and indicates that for demon-
stration purposes we can specialise to the Hasegawa—-Mima
equation. Section 3 outlines the EPIC scheme we shall use. Sec-
tions 4 and 5 discusses how to pose a test problem for a scheme
involving a dual particle—mesh representation of fields, with Sec-
tion 5 treating the difficulties of initialising a computation. Re-
sults of test calculations and a further analysis of EPIC are given
in Section 6. A summary is provided by Section 7.

2. GOVERNING EQUATIONS

It is not the purpose of this paper to dwell on the derivation
of these equations (see, e.g., Horton {1]). A representative set
is provided by Biskamp and Walter {16], viz.,

%(q) ~Vid + §,Dd) = Aan%(? —(b- Vg~ v¥i®, (D)

d
Evn =—h- Vb + P-\i(b . V)ZU“ + }.l.lvllv“,
(2)
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where

d o
= + - = 5
iy u-VvV, u=vVd,3 (3
V.= _6 9 )] and b=(-6y 0,1 “4)
1 81" ay: - sye ] .

@ is the electric potential, doubling as a stream function, and
vy is the ion velocity parallel to a magnetic field imposed in
the direction of b; 8, is the so-called nonadiabatic operator,
&, and &, correspond to gradients of density and magnetic field,
respectively, and », w;, and g2, represent assorted diffusive pro-
CESSeS.

The physical implications of (1)~(2) become clearer if we
neglect the (b - V), or shear terms. Equation (2) is then a pure
advection—diffusion equation for vy. In the adiabatic limit and
neglecting spatial variation with z, (i) becomes

dp_ 0% o —p-V:
o 6"8,\’ Wb, p=@ — VP, {3

In the case |V2®| & |®| and § = 0 we recognise this as the
Navier—Stokes equation for vorticity w = —V*®. In oceanogra-
phy and meteorology (5) with v = 0 is known as the equivalent
barotropic equation, or the vorticity equation on the 3-plane.
It is customary, though, to make the oceanographic equations
dimensionless so that a parameter y? appears, i.e., p = y'® —
Vid; vy~ is the horizontal radius of deformation or the Rossby—
Obukhov radius, which corresponds to the ion Larmor radius
p. in the drift wave case, Since p, is traditionally set 1o unity
in drift wave studies the role of ¥~' is played by the domain
size L. In plasma physics (5) with » = 0 is known as the
Hasegawa—Mima equation.

The derivation of drift wave equations is complex and involves
simplifving assumptions, so that there is always some doubt as
to what constitutes an adequate model (e.g., [ 17]). This complex-
ity has tended to obscure a difficult issue, namely the choice of
boundary conditions at the radial boundaries y = 0, L,. Equations
(1)—(2) are derived for slab geometry; that is, the intent is to
model only a small fraction in minor radius (y) of a toroidal de-
vice. x and z correspond to angular co-ordinates; hence, periodic
boundary conditions are widely used in those directions. The ex-
plicit y-dependence of the shear makes periodicity in y difficult
to justify for (1)—(2), although it is acceptable for (5).

In the latter case, in the inviscid limit the most important invari-
ants of the Hasegawa—Mima equations are ‘‘momentum,”’

M= ®aray; ©

“energy,”
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M. E, and N are useful for monitoring the accuracy of computa-
tions. However, although for hydrodynamical applications the
limit of small » is of interest, the “ergodic”” v = 0 case has a
distinctly different energy spectrum [18].

3. NUMERICAL TECHNIQUES

3.1. Outline

Our ultimate goal is to solve Egs. (1)—(2), rather than Eq. (5).
Hence, although we shall use the Hasegawa—-Mima equation as
a test problem, we exclude at once the fully spectral schemes
such as those used by Fyfe and Montgomery [18] and McWil-
liarms [19]. In any event, we do not wish to be tied to a restricted
set of boundary conditions. In these circumstances, it has be-
come customary in drift-wave calculations to use finite differ-
encing in radius, together with a Fourier representation for any
angle-like co-ordinates [16, 20, 21].

An anisotropic representation of this kind is not desirable,
if the slab model is to have any kind of validity. The argument
for it is apparently that spectral methods are “‘optimal,” so it
should be used wherever possible. This claim requires careful
examination; in fact spectral methods are best when approxi-
mating smooth functions. Advection-dominated flows are good
at generating boundary and internal layers, ie., fields with
exactly the kinds of functional dependence that are not well
represented by, e.g., Fourier harmonics or Chebychev polyno-
mials, Even in the case of doubly periodic flow, Browning and
Kreiss [22] have shown that fourth-order finite differences are
equivalent to a spectral method, at least for the viscous Euler
equation.

Advection tends to generate fine structure, but shear has a
length-scale approaching device size; hence we expect to per-
form calculations with features at the limits of grid resolution.
When working at this lintit, we take the view that it is best to
be guided by the physics we are seeking to represent. This
makes the use of Lagrangian, or particle schemes, very com-
pelling.

The extended PIC scheme can be illustrated by considering
(5). rewritten in Lagrangian form as far as possible [23], i.¢e.,

dF _

o S, 9

where
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F=p+d8y, p=90-Vip, S=—Vid (0
When § = 0, F is conserved following a particle trajectory
x = u. However, to advance the particles we need to calculate

the stream function @. We invoke the dual representation

2 pio(x — %)
: (1D

px) =
; pP‘n{fp(x),

where x;, i = 1, ..., P, are the positions of the particles, §(x)
is the Dirac delta function, and #,(x) is the basis function
corresponding to node p. Taking the inner product of (11) with
#,(x) and using the middle expression from (10) yields

;¢M%J@+Wﬂmﬂ%»=2ﬂ%ml (12)

In finite element language (MM),, = (&, W) is the the mass
matrix. Since p, may be straightforwardly calculated from F;,
{12) is an equation for the unknown quantity ®,. § is taken
into account by allowing F; to vary; integrating (9) over a
particle path from time level nto n + 1 yields

F:‘H - an = i“H S(xl'(t)7 t) dl‘ (]3)

and the integral may be approximated in any convenient
manner.

Solution of (9) by EPIC therefore consists of the follow-
ing stages:

{A) Initialisation, where particles are introduced at posi-
tions x} with attribules F? derived from a specified polential
®(x), see the discussion in Section 5,

(B1) The flow u" is calculated from &% and the particles
moved to new positions x7*7,

(B2) F™'is calculated using a discrete version of (13),
hence pf*!,

(B3) The right-hand side of (12} is generated, in the so-
called charge assignment step, and

(B4) Eq. (12) is solved for dz*.

The timestep loop (B} is repeated as often as needed.

3.2. Implementation of EPIC

At each stage of the timestep loop. several options are avail-
able, We shail be guided by the philosophy of choosing the
simplest, consistent with producing accurate results. Hence we
take i, to be chapeau functions, i.e., piecewise linear functions
with nonvanishing gradient, since this is the lowest order con-
forming element for (12).
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If the element nodes are taken to lie on a uniform, two-
dimensicnal rectilinear mesh with spacing A, then p = (p, g}
and (12) may be written in stenctl form as

1 4 1 -1 -1 -1
la 16 4+l -1 8 -1 Iy
36 +§ C,, = Wppg
1 4 1 -1 -1 -1
(14)

where p, is defined as the right-hand side of (12); e, it is
obtained from the p; by the area weighting rule if the ¢, are
chapeau functions. Equation (14) is an elliptic equation that is
solved by standard techniques, viz., Fourier transforming in the
x direction to reduce the discrete operator to block tridiagonal
form and then using the Thomas or factorization afgorithm for
each tridiagonal system. General three-point conditions at the
¥ = constant boundaries are, with this approach, little harder
to impose than zero or periodic boundary conditions.

We note that we could have invoked a dual basis representa-
tion for F; cf. Eq. (11). At first sight this is attractive, since
the right-hand side of (12) becomes

2 Fip(x) = 8. 2 (3, ), (15)
i ]

where 5, = 8,/ n,, and the quantity n,, is the number of particles
per node. Summing (15) over all the nodes, leads, when the F;
are invariant, to a discrete conservation law for ‘‘momentam.’’
However, on a node-by-node basis, there is no compensation
in the second term for fluctuations in the number of particles
per cell that affect the first term. Preliminary calculations show
the harmful effects of an increased level of noise.
Consistent with our “*simplest first’” policy, the integrated
source term is approximated as
S (xi, M) — 2S(xE, ") A, (16)
where x§ = $(x” + x™!) is the mid-point of the particle trajec-
tory. Clearly, the chapeau function does not conform for the

fourth-order operator, so we replace it by two successive appli-
cations of the V] stencil viz.,
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Equation (16) is explicit, so we expect a maximum stable time-
step scaling as 1/v, but we imagine » so small that this limit
need not concern us.
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3.3. Computing Particle Orbits

As we shall see, the form of particle pusher in step (Bl) is
critical. There are two main issues to resolve: (a) how to calcu-
late w given @, and (b) how to update x, given u.

Since s, conforms for first derivatives, it is natural to evalu-
ate, e.g., 4, = d¢h/dx as

u(x) = >, Dy dth,/dx. (18)

The representation used by Christiansen [4] has greater spatial
dependence, i.e.,

U (X) = X (),

P

(19)

where i, is formed by differencing &,. This, however, has the
useful property of vanishing “‘self-velocity,”” corresponding to
vanishing self-force in particle codes [12, Section 5-2-3].

(b) is a problem in the stability theory of ordinary differential
equations, e.g., Lambert [24]; we have to consider approxi-
mately solutions to y = —Ay, where

2 2 2 2
A= (H) - ﬂ_@g (20)

dxdy ax? ayt’

ldeally, explicit formulae should be available to keep the cost
down. The possible schemes are tightly constrained by storage
requirements (see, e.g., [12, Section 4-7-3, 23, Section 4.3])
that rule out all but the low order multistep schemes, viz.,
simple Euler and the associated predictor—corrector methods.
The relevant amplification factors r are respectively

re=1+h re=1+h+h, 1)

where & = A Az, and they can crudely be identified with the
Courant number (see Section 6). Hence, near a stagnation point
with closed stream-lines (A2 < 0), we expect particles to spiral
outwards for Euler {IrEJ > 1), and inwards for predictor—correc-
tor {|rpe| < 1 for -1 < ih < 1). Early calculations with these
two schemes showed this behaviour and an associated lack of
energy conservation. An intriguing possibility is to alternate
the two schemes, giving an overall r such that |r|? — 1 = |p|®
for A% < 0. Turning to second-order schemes, we have the
Runge-Kutta schemes with

r=1+h+ 3, (22

go that for A® << 0,

(r? =1 =4l (23)
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High order, low storage, Runge—Kutta schemes have been de-
rived, but are not pursued here on grounds of complexity.

All the above schemes suffer as soon as |k, effectively the
Courant number, gets large (and if 7 < —2 they completely
misrepresent the flow near an X-type stagnation point), The
trapezoidal rule, at first sight implicit, has the ideal property
that || = 1 for any h and || = | when A* < 0. Further, it is
also symplectic, in the sense that for @ independent of time,
it defines a mapping (x,, ¥,) — {X.11, ¥,+1} such that

a(xnﬂiyrﬁl) =1, (24)
(X V)

cf. the leapfrog rule for the equation £ = a. Other sympletic
schemes are possible [26] but are timestep limited. Tt is unneces-
sary to consider them when (18) involves chapeau functions,
since the trapezoidal rule may be rearranged to give explicit
formulae for (x,:;, ¥,+;) within each cell. The trapezoidal rule
is the method of choice in these rather restricted circumstances,
provided the “‘self-velocity’” is not important,

4. CHOICE OF TEST PROBLEM

4.1. General Issues

We consider the damped Hasegawa—-Mima equation, since
it is the simplest advection-dominated system of relevance to
drifi-waves, We concentrate on the nonlinear case, since a
von Neumann stability analysis is easily performed when the
particles are fixed and EPIC then behaves like a good second-
order scheme. Unfortunately there is a lack of analytic stable
nonlinear solutions for testing purposes and no code comparison
exercise has been published.

When » = 0, the modons (see Meiss and Horton [27] and
references therein) have little advantage for testing purposes
over the simple solution

. 2wk . 2wl
D(x, v, 1) = By sin -—E——(x — upt) Sm_l;y’

X

(25)

where

vp = &J[1 + 2Qmwk/Lxy + Qul/LY], (26)
since both have vanishing nonlinearity. Equation (25) can also
be viewed as the linear mode for the case of zero or periodic
boundary conditions in y, whose zero growth rate is to be
verified. Unfortunately, (25) is unstable, so it only provides a
crude check on v, when @ is O(1). It is natural therefore to
concentrate on checking the conservation laws.

We also have to decide which parameters, not only mesh-
spacing h and time-step A¢, but also number of particles per
node n,,, give the best accuracy for the least computational
cost. Regrettably, since we have a dual representation for the
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fields, there are several possible discrete analogues of the defi-
nitions of M, E, and N, hence there is uncertainty in how we
measure accuracy.

A second approach would be to make a “*definitive’’ compu-
tation using very small At and A, and compare. We defer this
to later work [28].

4.2. Diagnostics

Since the accuracy to which the quantities momentum M,
energy E, and enstrophy & are conserved is the factor discrimi-
nating among the various numerical methods, it is necessary
to discuss how these should be computed. In one sense the
particle method does better than a spectral scheme, for it has
an infinity of invariants, namely X, F2 for any power Q corre-
sponding to the quantities

[0+ 80 axay, @7

preserved when there is no normal flow at y = 0, L,. However,
we want to be able to analyse the spatial distributions of con-
served quantities, requiring mesh-based definitions. Moreover,
there is no analogue of £ in the above hierarchy.

The most obvious option is 1o use finite differences to calcu-
late the gradients in £ and ¥ and to sum the resulting mesh
guantities. It might be wondered why this is not acceptable,
since in the limit of vanishing A, all consistent measures must
be the same. But, of course, carrying this reasoning to its logical
conclusion, all consistent numerical schemes are the same.
The point is that a particle-mesh computation contains more
information than just the mesh represents.

Treating momenturn M first, most information is used in the
definition if we choose

My =122, pu(x). (28)

The mesh analogue of (6) is 42 2, ®,, and summing (12} over
p establishes its equivalence with (28), since, excluding sur-
face terms,

pz Do, Yy = 2, Py (29)

Here, the lumped density p, plays the role of momentum.
Equation {28) implies that

My=hY p,. (30)
Since each F; is conserved, we have
Pt + 8,y = pr + 8,y (31)

therefore
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(32)

My =M= 5, (Z - ny);

i.e., My varies because the centroid of the particle distribution
moves a distance Ay, and this is an error for zero or periedic
¥ boundary conditions. M, is thus more revealing than >, F.
Indeed, we have
M- ML= —§,L LAy, (33)

so in the test problem an error in M3 of 0.1 translates to a tiny
error in mean position Ay = 107

The definition of energy E follows the usual practice in
particle codes, viz., '

Eo =31 piby(x). (34)

Enstrophy N has many more plausible definitions. It is natural
to base it upon J p? dx dy, viz.,

1
Now = 5 W 2 pliy(x), (35)
P
Now = 3 1, [pdh)F: (36)
np
1
Noy =3 1 2 popity(x)- 37
Lp

The last is not cbvious, but it possesses a satisfying symmetry.
Remember the dual representation; Eq. (11) implies that

Sl ) = 3 1, pat( (38)
q i
Now
i 1
S Paeay =3[ o0 S, o0 ey
1 (39)
= 52 Ppg pq(‘!’qv d’p)
which, by Eq. (37),
= %hg Ep Po Pll(%:)
’ (40)

1
= Ejg Pp f(X) 2 p(x — X;) dx dy.

So Np; is equivalent to both a mesh-based and a mixed particle—
mesh definition, and is adopted on these grounds.
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Last, we remark on the efficient evaluation of M, E, and N
by the above formulae. 1t is natural to treat them as sums over
particles, but we observe that for each particle we have to form
p: from F; and interpolate @ to the particle position. If the same
procedure were to be used to calculate total source terms, e.g.,
from viscosity, the extra computational cost could reach that
of the principal timestep loop. Instead we can rearrange the
definitions in terms of p, (a quantity that has to be calculated
anyway; see Eq. (14)) to

My=H> p, (41)
by
n W
Ep=— 29, 2 pfy(x}y == 2, Dopy. (42)
2 p i 2 p
h‘z
Nos =2 2 poby- (43)
P

Hence, the operation count is reduced by an order of magnitude,
at the expense of a small increase in store.

5. INITIAL CONDITIONS

5.1 Starting Procedure

It is not always appreciated that this is often the most arduous
part of writing a particle code. Careful attention has to be paid
to this stage, as the test problem selected (Section 6) is inviscid;
therefore even the discretised fields will have long memories.
Second-order accuracy is required for the particle positions. To
minimise further the effect of the starting procedure, we com-
pute backwards to time ¢t = —Ar.

Euler is the simplest scheme to model the particle motion
and can be made to yield second-order accuracy by means of
Richardson extrapolation; viz., we compute particle positions
x7F and x;7F at + = —At by two steps of —% Ar and a single
step of —At, respectively. The guantity

X' =2x78 - x; (44)
contains no second-order errors.

The resulting algorithm is as follows:

(A1) calculate x; 7 ysing ®, (given),

(A2) evaluate ;% from p7*? = F, — 3, yiE?,

(A3) calculate x7 F using &, 52 and x; 2,

(A4) calculate x; F using &, {given) and
simultaneously form x7!,

(AS5) evaluate B, from ! = F; — gn vt

There is a choice to be made for the initial particle distribu-
tion; it is natural to make it spatially uniform, but its alignment
with respect to the nodes still has to be specified. The obvious
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possibilities are AN—particles at nodes—and MW-—nodes
midway between particles. MW seems preferable for an ele-
ment-based approach to particle tracking (i.e., the trapezoidal
rule), since for AN some of the particles sit initially in anoma-
lous positions, viz., exactly on the element boundaries.

We have to specify how the F; are to be initialised for a
given, usually analytic, ®(x), which is the most natural way
to start a calculation. Thereafter, ® will be approximated from
knowledge of the F; so the first step is all-important. The field
to focus upon is p (rather than F), which can obviously be
formed by turning (14) around and then inverting the mass
matrix to give p,. The problem reduces to one of assigning
particle values p;, given mesh values p,; and there is an obvious
rule for this, namely, area weighting in the case of chapeau
functions, or generally,

o= pyylx). (45)

m P

Problems arise when we determine &, from the above g, It
turns out that these d», are not the same as P(x,), in general.
Operator notation makes the problem clearer—we have formed

D, =" -AM AP MM Od(x,), {406)
where O is the operator in (14), giving p' from ®, MM is the
mass matrix, AP is the operator assigning particles, and AM is

the operator assigning back to the mesh. &, # P(x,), since
AM - AP # MM, in fact,

AM-AP = ni > (XK. (47)

pn i

In default of operators for which AM - AP = MM (see Section
5.2) we avoid the discrepancy by discarding ®(x,) in favour
of ®,.

The one-dimensional version of (47) is instructive. MM =
(Yr(x), ¢,(x)) yields the well-known stencil (3 ) when ¢ is

a chapeau function, whereas (54) evaluates to (} § §) for the

AN case and (75§ &%) for MWif n,, = 2. This is another advantage

for MW, since & is within 13% of §, whereas § is 25% smaller.

5.2. A Refinement

The clumsiness of the above procedures ultimately arises
because AM - AP # MM. Since there 1s considerable freedom
in defining AP, it is possible to find an AP = AP, so that
equality holds, as we shall demonstrate.

The derivation for the multi-dimensional case is simplified
by noting that AM and MM both factorise into products of one-
dimensional operators, so for most purposes it is adequate to
consider the problem illustrated in Fig. la. e, ..., o, are the
unknown weights in the case s, = J, so that particle ;j is
assigned a ‘‘mass’ oo, + oy-;pe. Let us assume the s, to be
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FIG. 1.
two-dimensional case.

chapeau functions; then assignment back to the mesh is just
arca-weighting. The mesh value at C receives contributions
from particles to either sides; in the MW positions the total
turns out to be:

(PL+PR)J (_l)
J ;“ﬂ' 2

(48)
I
Pe o1 .o
5ol renlr-d)
Comparison with MMp gives the relations
1< $ 1
- S o=
3 ; o g{jaj 61,
(49)
1Y < 3 2
2(J+— >op—2 ja ==
2 = j=1 3
Evidently any «; satisfying
1 . J o
ZO—’;:E.- EJO-’;:E"‘Z (50)

will be acceptable and there are similar relations for the AN

Assignment of mesh-based information to particles; particle positions are marked with crosses, dots indicate nodes: (a) one-dimensional case, (b)

case. (For 4, that are more complicated than chapeau functions,
it may help to note that if weights w; are added to {(47), its
equality with (¢, ) for 4, products of a given order is a
standard, solved problem in the theory of numerical quadrature. )
For the case n,, = 2, the weights are unique, viz., oy = 5,
a, = {7. For n,, = 3. we suggest &, = 45, o, = &, and a; =
%, since these have the property that for equal values at the
two nodes, equal masses are assigned to the three particles.

The two-dimensional case opens vp more possibilities than
just using the product rule @ = ;0 (see Fig. 1b). Restricting
attention to the chapean ¥, there is little freedom in the case
ny = 4. When n,, = 9, lengthy but straightforward algebra
shows the additional constraint of locally 2 gf = 2 p,p} cannot
be met and that the schemes that come closest to meeting it
have some weights that are negative. Thus, again, the product
rule is to be preferred.

6. RESULTS OF THE TEST PROBLEM

Preliminary calculations showed that the initial conditions
need to have a small number of nodes per wavelength of ® in
order to generate errors that are easily distinguishable from
the fiuctuations that are inherent in any particle scheme. The
tendency of solutions to the Hasegawa—Mima equation to cas-
cade energy to long wavelengths suggests that a change of
scale will take place if we start with several wavelengths in
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TN

FIG. 2. Potential O(x, #) for the test problem of Section 6, shown as
contours equally spaced in ®. Al top is the initial condition, below lies the
computed solution at 1 = 0.26. The parameters used are n,, = 4, h = 33, and
¢ = %, and the particles were tracked using the trapezoidal rule.

our computational domain. We take L, = L, = |; 1.e., we work
in the hydrodynamical limit where |V3®| = {®| and use as
initial conditions (25) with®, = 1,k = 4, and ! = 5. To ensure
that v, = G(1), we must set § = 100 and, since our main
interest attaches to the nonlinear interactions, » = 0.

The initial conditions and a representative final state at ¢ =
0.26 are graphed in Fig. 2. The final ||* spectrum has a power
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law dependence with slope around (—4), as expected [18].
We used the starting procedure described in Section 5.1. The
program used the trapezoidal rule for following particle paths.
It is worth noting how we calculate & at time ¢, + #Ar. Tn
effect we have a general multilinear scheme, since @ can be
derived only by extrapolation (in an explicit scheme). The
obvious formula is

1 1 Az, 1 Ar,
+=An)=[1+= d(z) — - _
¢ (In 2 A'tn) (1 2 Atn-],) (t::) 2 Afﬂ_] @(f" ])a

G

where Af, = t,,1 — 1, and applying the standard Runge-Kutta
error analysis procedure ([24], §4.3) to the whole scheme with
Ar = constant shows that this gives a fully second-order
method. It is, moreover, possible to eliminate error terms
G(A£P,,) by taking (in the case Ar = const)
O+ AN =100 — DU — A + 10— 240, (52)
This gives a significant improvement in conservation properties
at littie extra cost. Note that it is computationally far more
efficient to extrapolate in time for ¢(t + $Af) at the mesh-
points, then interpolate @ at the particle positions.
Applying the trapezoidal rule to ¥ = u, based on (18) with

i, a chapeau function results in an equation for particle i of
the form

)7n+1 - yn = (a + byn+l) Af, (53)
where g and b follow from knbwledge of @, and y, and change

from one element to another, within an element

y,,+aAI

1—bAr >4

Yor1 =

and there is a corresponding relation for x,,,. With care at
the element boundaries it is possible to arrange it so that
Px,, vy = P(xn41, Ver1) €ven when particles leap from ele-
ment to element. In effect the scheme tracks contours of con-
stant ®(t + AN,

Figure 3 shows typical time histories of the discrete momen-
tum My, energy Ep, and enstrophy Np;. Note that M, varies
irregularly, apparently due to particle noise. E, changes first
quite rapidly at a rate (AE/f), and then more slowly at
(AE/1),. N stays almost constant initially; then it drops by about
two-thirds.

1t must be emphasised that we have arranged it so that there
is a gross energy error. Table I indicates the effect of varying
the node spacing k, the number of particles per node #n,,, and
the Courant number ¢ on the accuracy of the computation.

The energy error AE is expected to increase linearly with
time at a rate (see Appendix A for derivation):
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FIG. 3. Plots of momentum, energy, and enstrophy, i.e., M, E, and N as
defined by Egs. {6)—(8), against time for the run illustrated in Fig. 2.

AE  2a. EXNAP

S fuf SN 5
t 31ln, I (53)
The computed results fit this formula with «./f = 7. It is worth
noting how (k| and ¢ = 2At max{|u,] + |u|Mh are related.
Suppose the dominant mode is @ = sin Kx sin Ly—then
|Almes = |KL| and max{|u,), l,}} = max{K, L}. Hence if K = L,

c c 2

WA K

(56}

i.e., their ratio is roughly the number of mesh-points in the
dominant wavelength, divided by 7. In efficient computations

TABLE I

Accuracy (AE/ry and Computational Cost (Arbitrary Units for a
Given Physical Time) for the Particle—Mesh Scheme as Mesh-Spacing
A, Courant Number ¢, and Number of Particles per Node n,, Are Varied

h < - (AEfy, (AEIM, Cost
% 2 4 2000 1500 7.1
1 4 275 150 79
7 4 83 23 14
3= 9 180 55 13
b 9 36 = 22
A 1 9 88 27 111
% 9 17 ~0 199

ARTER AND EASTWOOD

this mumber will always be of order unity. Equation (55)
shows a cubic dependence on ¢; hence smaller timesteps are
favoured. The high power is unfortunate, since it negates a
possible asset of EPIC, namely no stability restriction on
the maximum c.

Like all particle codes, the computational cost scales with
Hy: 1., particle-based operations predominate. Hence (55)
shows there is no relative cost advantage in increasing siy;
n = | is too noisy, however, so we are left with n,, =
4. It is important to note that (55) shows an error =#; ie.,
the resulis are relatively insensitive to grid size, as anticipated
in Section 1.

The huge error in N deserves explanation, although it is
not particularly important for drift waves in a sheared geome-
try, since there is then no analogue of N. Ultimately it is
a consequence of the enstrophy cascade to small scales.
Roughly speaking, enstrophy goes to a lengthscale of order
of the particle separation, whereupon mesh-based quantities
underestimate it. Np, is the worst definition of N in this
respect: to illustrate the point, it was recalculated using nodes
with separations h, 2/2, h/3, and h/4 for a case with n, =
4. The initial N were 2.07, 252, 3.02, and 6.76 X
10°, respectively. By the end of the runs N had fallen to
(.57 and 1.6 X 10° in the first two cases, slightly risen to
3.2 X 10" in the third and fallen to 5.3 X 10° in the last.
N fluctuates widely as the effective i is decreased, so we
should not want to use a h/3 mesh, say. The point is that
the enstrophy information is there, but we cannot see it on
the scale of A Appendix B shows how for an enstrophy
distribution with r particles per wavelength we expect a
mesh-based definition to underestimate N by a factor (1 —
C/r), where C = 3 to 4.

7. SUMMARY

We have produced a code that successfully employs an ex-
tended PIC, or EPIC, scheme for a hydrodynamics application.
This is only one limit of interest to drift-wave turbulence mod-
ellers, and, indeed, [29] shows a different EPIC algorithm to
be more appropriate in circumstances where the particle self-
velocity causes problems.

As well as resolving a surprisingly large number of issues
concerning the dual representation, the paper bears out the
contention that it is eritical to track the particles accurately. In
this respect, we have derived error formulae that should have
widespread application. Appendix B contains an illustration of
how fluctuations due to the use of particles may affect global
quantities, There is thus sufficient information provided here
to decide whether a particle—mesh scheme is a suitable chotce
for a particular application,

We believe that the results of this paper show EPIC to be a
powerful method for solving advection-dominated problems.
Indeed for incompressible flow, Bermejo [30] has shown an
ephemeral PIC scheme to be equivalent to the semi-Lagrange
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FIG. 4. The periodic piecewise constant density distributicn as a function of position x (top). Below it are crosses indicating particle positions and dots

marking the nodes, showing the case s = 4, MW(0S).

methods that are state-of-the-art in weather forecasting, and,
of course, EPIC naturally extends to compressible flow also.
Ultimately, of course, only a comparison with other schemes
will establish its superiority [28].

APPENDIX A: DERIVATION OF ENERGY
ERROR FORMULA

It is relatively easy to estimate the energy error AF in the
case of scalar advection, i.e., no feedback of the scalar onto
the flow, since it is due solely to errors in the particle positions
Ax. Again, finite element nodes are assumed to lie on a uniform,
two-dimensional rectilinear lattice of spacing hA. If area-
weighting is employed, the change in the mesh value of the
lumped scalar py at a nearby node is

TABLE H

Normalised Enstrophy N[, for Periodic,
Piecewise Constant Density Distribution with r =
2s Particles per Wavelength and n,, = 4

r Case Nb
2 Any 0
4 AN i
MW(0S) 0
MW(SS) H
25, s odd AN 1= 3/r
MW 1 — 15/(4r)
25, § even AN 1 — 3/r
MW(OS) 1 — 44r
MW(SS) 1~ 7125

Apy, = plx Ay + y Ax)/k?: (57)
dny, particles contribute to py. The mean absolute value of x
and y is $1; if the mean absolute value of Ax and Ay is &, then
assuming a random distribution for the products y Ax and
x Ay, on average,

2ep,

1Ap,| = — FeES ni (58)
We use the definition of energy
h2
E== > b, (5%
P

hence,
2
AE=L S (o, 00, + Ap @) + 0 ~ K S Ap, (60
P P

Now (60) has to be evaluated carefully, since the contributions
Ap, cancel in the case where @, is constant; hence,

AE = ach? D, Aph|V O, (61)
P
2ep, D
~ k3, =t (62)
P Pn

where [ is the lengthscale of &, and ac is the correlation be-
tween V@ and the perturbed particle positions. So

e. (63)
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The above formula may be too optimistic if £ is taken to be
the truncation error of the difference scheme, since it neglects
feedback effects; the defiection of a particle by Ax and conse-
quent error Ap, affects the velocity potential. It is then also
more plausible that o, ¥ 0. Thus an initial error £ leads to a
positional error at the next step, such that

|Ax| = [VA®D,| Ar, (64)
Assuming that Ad, = A p,, we estimate an enhancement factor
2@,/ (IPnY); ie., if @, = O(1),

AE 8ac ¢
— = — . 65
Ex . (6)
This formuia fits the data of Table 1 if
acll =17, (66)

since £ = HA’A#* for the trapezoidal rule. If we take [ = max
(IP|/|VP]), then o = 0.22, which is reasonable, if a little high.

APPENDIX B: THE ENSTROPHY PROBLEM

Imagine that the density p is distributed in a piecewise con-
stant fashion as depicted in Fig. 4. Suppose there are r = 2s
particles uniformly distributed in each wavelength and each
particle is assigned mass *m, depending on its position relative
to the density field. Let there be two particles per node {corre-
sponding to n,, = 4 in the two-dimensional case), and use area
weighting to assign to the nodes. The total enstrophy or p* in
a domain with » nodes is evidently n{2m)’ if we consider n
and s sufficiently large. The case of s extremely small highlights
the problem, for if s = | and the particles are distributed either
with one at a node (AN} or one at a quarter-node (MW), then
values assigned to the mesh are zero; i.e., N = {) using definition
Npp. When s = 2, we can make explicit how N can fluctuate.
For the AN case, N/(4nm?) = N’ = {, and likewise for the MW
case when the nodes are between particles of the same sign
(85 case). But when the node lies between particles of opposite
sign (OS case), cancellation again occurs and N = (,

Evidently as s increases there will always be some undersam-
pling, where the density distribution jumps. The dependence
on s is worth siudying, since any particle quantity measured
on a mesh will be affected by undersampling and fluctuations
in the same sort of manner, although usually less dramatically.
It tums out that the cases s even and 5 odd need separate
treatment, and both 8 and §S cases give the same n when s
is odd. Table 11 lists the results of some straightforward aigebra.

ARTER AND EASTWOOD

Finally note that for n,, = 1, N’ = 1 for the AN case and
N’ =1 — 2/r for the case of particles midway between nodes;
i.e., N is on average higher when there are fewer particles per
node as the Np, results in Section 6 demonstrate,
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